Gasgesetze mit Beispielen
Gasgesetze mit Beispielen
1. Boyles Gesetz: (Druck-Volumen-Beziehung)
Gase haben die Eigenschaft der Expansion und Kompressibilität. Gasarten haben keinen Einfluss auf das Expansions- oder Kompressionsverhältnis. Alle Gase haben die gleiche Expansionskonstante. Wir können Boyles Gesetz definieren;
“Bei konstanter Temperatur und Partikelanzahl sind Druck und Volumen der Gase umgekehrt proportional zueinander.”
V ist umgekehrt proportional zu P oder
P.V = konstant
Außerdem;
P1.V1=P2.V2=P3.V3= .. (für dasselbe Gas bei konstanter Temperatur und Partikelanzahl.)
Das folgende Bild fasst das Boyle-Gesetz zusammen.
Im ersten Container haben wir P.V.
Im zweiten Container haben wir 2P.V / 2 = P.V.
Im dritten Container haben wir 4P.V / 4 = P.V.
Wie du siehst; Wenn wir das Volumen des Behälters verringern, steigt der Gasdruck mit der gleichen Menge und die Multiplikation von P und V ist immer konstant.
Beispiel: Gas mit einem Volumen von 150 cm3 hat einen Druck von 120 cmHg. Wenn wir das Volumen des Behälters auf 300 cm3 erhöhen, ermitteln Sie den Enddruck des Gases.
Da P1.V1 vom Boyle-Gesetz her konstant ist; P1.V1=P2.V2
120.150=P2.300
P2=60 cm Hg
Wie Sie dem Beispiel entnehmen können, sinkt der Druck mit zunehmendem Gasvolumen um den gleichen Betrag.
2. Charles ‘Gesetz: (Volumen-Temperatur-Beziehung)
Bei konstanter Partikelzahl und konstantem Druck ist das Gasvolumen direkt proportional zur absoluten Temperatur. Diese Aussage wird “Charles ‘Gesetz " genannt.
V / T = Konstante (Anzahl der Partikel “n” und Druckkonstante “P”)
Darüber hinaus ist in einer Situation das Verhältnis V / T gleich V1/T1 in einer anderen Situation für dasselbe Gas bei konstantem n und P. Das folgende Diagramm zeigt die Beziehung zwischen Volumen und Temperatur von Gasen bei konstantem Druck und Anzahl der Partikel.
Untersuchen Sie die oben angegebenen Grafiken. Wir müssen die Temperatur in K-Einheiten messen. Sie können die Änderungen in den Diagrammen sehen, wenn wir ° C als Einheit und K als Einheit nehmen.
Beispiel: Gas mit 127 ° C hat ein Volumen von 240 ml. Wenn wir die Gastemperatur von 127 ° C auf 227 ° C erhöhen, ermitteln Sie das Endvolumen des Gases.
Lösung:
Wir konvertieren zuerst die Temperatureinheit. T1=127+273=400 K
T2=227+273=500 K
V1=240 ml
V2=?
Wir verwenden das Charles’sche Gesetz, um dieses Problem zu lösen. V1/T1=V2/T2
240/400=V2/500
V2=300 ml
Seien Sie vorsichtig, wenn Sie die Temperatureinheit nicht ändern, können Sie den tatsächlichen Volumenwert nicht finden.
3. Gay Lussacs / Amontons Gesetz: (Druck-Temperatur-Beziehung)
Wenn wir die Gastemperatur in einem Behälter mit konstantem Volumen erhöhen, nimmt die Geschwindigkeit der Gasmoleküle zu. Wenn die Geschwindigkeit der Moleküle zunimmt, erhöht sich die Kollisionszahl mit Oberflächen, dies ist Druck. Mit anderen Worten erhöht eine Temperaturerhöhung des Gases bei konstantem Volumen und konstanter Anzahl von Partikeln den Gasdruck. Die unten angegebenen Diagramme zeigen die Druck-Temperatur-Beziehung von Gas unter Konstante n und V.
Zusammenfassend können wir folgende Gleichung schreiben:
P1/T1 = konstant
Somit; P1/T1=P2/T2
Beispiel: Wenn der Gasdruck in einem Behälter mit konstantem Volumen von 4P auf P gesenkt werden soll, um wie viel die Temperatur geändert werden soll. Seine aktuelle Temperatur beträgt 127 0C. P1=4P
P2=P
T1=127 0C=127+273=400 K
P1/T1=P2/T2
4P/400=P/T2
T2=100 K=t+273
t=-173 0C
4. Avogadro-Gesetz: (Volumen-Anzahl der Partikel-Beziehung)
Gase mit gleichem Druck und gleicher Temperatur haben die gleiche Anzahl von Partikeln in der gleichen Menge von Volumina. Mit anderen Worten sind Volumen und Anzahl der Partikel von Gasen direkt proportional zueinander. Wir haben in früheren Themen gesagt, dass 1 Mol Gas 22,4 Liter unter Standarddruck und -temperatur ist und 1 Mol Gas 6,02x1023 Moleküle / Atome enthält. Wir können diese Beziehung mit folgender Gleichung zusammenfassen:
V / n = konstant oder;
V1/n1=V2/n2 (P und T sind konstant)
Beispiel: Wenn 5 g O2-Gas ein Volumen von 200 cm3 haben, finden Sie unter den gleichen Bedingungen ein Volumen von 20 cm3 O2. (O = 16)
Lösung: O2=2x16=32
Wir sollten Mol O2 in zwei Situationen finden. n1=5/32 Mol und n2=20/32 Mol
V1/n1=V2/n2
200/5/32=V2/20/32
V2=800 cm3
5. Daltonsches Gesetz: (Beziehung zwischen Druck und Anzahl der Teilchen) Mit zunehmender Partikelzahl in einem geschlossenen Behälter steigt der Gasdruck. Mit anderen Worten, der Druck von Gasen ist bei konstantem Volumen und konstanter Temperatur direkt proportional zu Molen davon.
P / n = konstant oder; P1/n1=P2/n2
Beispiel: Wenn der Druck von SO2 von 6P auf 3P abnimmt, stellen Sie fest, dass sich die Molzahl bei konstantem Volumen und konstanter Temperatur ändert.
Lösung: P1=6P, P2=3P
n1=n
n2=?
Unter Verwendung des Daltonschen Gesetzes; P1/n1=P2/n2
6P/n=3P/n2
n2=n/2
Änderung in den Mol SO2 ist n-n/2=n/2